Influence of long range interactions and disorder correlations on the critical behavior of the Ising model

Maxime Baczyk
Laboratoire de Physique Théorique de la Matière Condensée
Université Pierre et Marie Curie

ERG 2012

A work done with G. Tarjus (LPTMC), M. Tissier (LPTMC) and Y. Sakamoto (College of Science and Technology, Japan)
Pair interaction potential with a power law decay:

\[V(r) \sim \frac{1}{r^{d+\sigma}} \quad (r \gg 1) \]

Moderately long range interactions: fast decay \(\sigma > 0 \).

⇒ Use the usual equilibrium statistical physics to study phase transitions and critical phenomena.
• Applications in condensed matter physics.
• LRI modify the critical behavior and tend to supress fluctuations.
 ⇒ New universality classes depending continuously on σ.
 ⇒ Phase transitions even in one dimensional systems (decrease of the upper and the lower critical dimensions).
• Use in disordered systems theory (spin glasses, Random Field Ising Model):
 Vary d in the SR model \simeq Vary σ with d fixed in the LR model.
 ⇒ Work in one dimensional systems (simulations, real space RG).
Field theory: the action

\(\phi^4 \) field theory for the Ising Model with long range interactions:

\[
\beta \mathcal{H}[\phi] = S[\phi] = \int d^d x \, d^d x' \, j(|x - x'|) \phi(x) \phi(x') + \int d^d x \, \frac{g}{4!} \phi(x)^4
\]

\[
\sim \int \frac{d^d q}{(2\pi)^d} \frac{1}{2} \phi(q) (cq^2 + c'(q^2)^{\frac{\sigma}{2}} + \tau) \phi(-q) + \int d^d x \, \frac{g}{4!} \phi(x)^4
\]

\[
= \int d^d x \, \frac{1}{2} \phi(x) (-c \partial^2 - c'(\partial^2)^{\frac{\sigma}{2}} + \tau) \phi(x) + \frac{g}{4!} \phi(x)^4
\]

where \(j(r) \sim r^{-d-\sigma} \) and \((\partial^2)^{\alpha} \phi(x) = -\int \frac{d^d q}{(2\pi)^d} (q^2)^{\alpha} \tilde{\phi}(q) e^{iq \cdot x} \)

the fractional laplacian.

\(\Rightarrow \) Non analytical 2 points function in momentum dependence.

\(\Rightarrow \) \(\sigma \) must be compared to 2:

- \(\sigma < 2 \): Long distance physics dominated by the LR term \(q^\sigma \).
- \(\sigma \geq 2 \): the SR critical behavior is recovered.
Field theory : results about the critical behavior

• MF theory ⇒ \(\sigma \)-dependent exponents in the LR regime:

\[
\eta = 2 - \sigma \quad \nu = \sigma^{-1} \quad \text{for } \sigma < 2
\]

\[
(\eta = 0 \quad \nu = 1/2 \quad \text{for } \sigma \geq 2)
\]

• MF theory applies when \(\sigma \leq \frac{d}{2} \) i.e. \(d_{\text{up}} = 2\sigma \) for \(\sigma < 2 \)

\((d_{\text{up}} = 4 \) for \(\sigma \geq 2).\)

• Perturbative RG at 2 loops level in the LR regime \(\epsilon = 2\sigma - d \).

uestioned perturbative RG results:

• No renormalization of the non analytic term \(q^{\sigma} \)

\(\Rightarrow \eta = 2 - \sigma \) always applies in the LR regime, even out of the classical behavior (RG vs simulations).

• Limit between the two regimes in \(\sigma = 2 - \eta_{SR} \) instead of \(\sigma = 2 \) (RG vs RG & RG vs simulations).
Field theory: phase diagram

If:

- No renormalization of the q^σ term.
- Transition between the 2 regimes in $\sigma = 2 - \eta_{SR}$.

\Rightarrow The exponents are continuous functions of σ.

Maxime Baczyk Laboratoire de Physique Théorique de la Matière Condensée Université Pierre et Marie Curie

Influence of long range interactions and disorder correlations
Non Perturbative Renormalization Group

Use the Wetterich flow equation for the effective average action Γ_k.

Derivative expansion with a non analytical term:

$$\Gamma_k[\varphi] = \int d^d x \left\{ \frac{1}{2} Z_k(\varphi(x))(\partial_\mu \varphi(x))^2 - \frac{1}{2} Y_k \varphi(x)(\partial^2)\frac{\sigma}{2} \varphi(x) + V_k(\varphi(x)) \right\}$$

- One finds $\partial_t Y_k = \frac{d}{dq} \partial_t \tilde{\Gamma}_k^{(2)}(q, -q)|_{q=0} = 0$
 \Rightarrow One sets $Y_k = 1$

- Flow equations for $V_k(\varphi)$ and $Z_k(\varphi)$ with the non analytic propagator:

 $$\tilde{G}_k[\varphi](q^2) = \frac{1}{q^\sigma + Z_k(\varphi)q^2 + V''_k(\varphi) + R_k(q^2)}$$

- Rescaling to find the fixed point in the LR regime:

 $$\tilde{\varphi} = k^{\frac{\sigma-d}{2}} \varphi \quad \tilde{Z}_k(\tilde{\varphi}) = k^{2-\sigma} Z_k(\varphi) \quad \tilde{V}_k(\tilde{\varphi}) = k^{-d} V_k(\varphi)$$

 fixed anomalous dimension $\eta_k = 2 - \sigma$.
Results of NPRG

- No renormalization of the non analytical term
 \[\Rightarrow \eta = 2 - \sigma \] in the LR regime.

- One Recovers the stable gaussian fixed point for \(\sigma \leq \frac{d}{2} \) and the perturbative one loop result in \(\epsilon = 2\sigma - d \).

- Numerical integration of the flow equations \(\partial_t \tilde{V}_k(\tilde{\varphi}) \) and \(\partial_t \tilde{Z}_k(\tilde{\varphi}) \) to find the fixed point in the non classical LR regime and check the limit between the LR and SR behaviors.
Numerical results in 2 dimensions

⇒ Consistent results with the change of regime in $\sigma = 2 - \eta_{SR}$ and not $\sigma = 2$

$\eta_{SR} \approx 0.28$ using NPRG

$\eta_{SR}^{\text{exact}} = 0.25$
Long range disorder correlations

Random Field Ising Model: Ising Model in presence of a quenched random magnetic field \(h(x) \).

SR version of RFIM: \(\overline{h(x)h(y)} = \Delta \delta(x - y) \)

- SUSY in the associated field theory at \(T = 0 \).
 - Dimensional Reduction property \(d \mapsto d - 2 \):
 - critical behavior of the disordered model in \(d \) dimensions
 = critical behavior of the pure model in dimension \(d - 2 \)
- SUSY and DR break below a critical dimension \(~ 5.15\) (shown by NP-F RG).

LR version of RFIM: \(\overline{h(x)h(y)} \sim \Delta |x - y|^{\rho - d} \)

- RFIM with LR interactions (\(\sigma \)) and LR disorder correlations (\(\rho \)).
- Same SUSY as in the SR version when \(\rho = 2 - \sigma \).
- Recheck the validity of DR in the supersymmetric LR version of RFIM as function of \(\sigma \).
Long range disorder correlations

Work in progress.

Thank for your attention.

Influence of long range interactions and disorder correlations on the critical behavior of the Ising model